Metamath Proof Explorer


Theorem dflim3

Description: An alternate definition of a limit ordinal, which is any ordinal that is neither zero nor a successor. (Contributed by NM, 1-Nov-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion dflim3 Lim A Ord A ¬ A = x On A = suc x

Proof

Step Hyp Ref Expression
1 df-lim Lim A Ord A A A = A
2 3anass Ord A A A = A Ord A A A = A
3 df-ne A ¬ A =
4 3 a1i Ord A A ¬ A =
5 orduninsuc Ord A A = A ¬ x On A = suc x
6 4 5 anbi12d Ord A A A = A ¬ A = ¬ x On A = suc x
7 ioran ¬ A = x On A = suc x ¬ A = ¬ x On A = suc x
8 6 7 bitr4di Ord A A A = A ¬ A = x On A = suc x
9 8 pm5.32i Ord A A A = A Ord A ¬ A = x On A = suc x
10 1 2 9 3bitri Lim A Ord A ¬ A = x On A = suc x