Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordinals (continued)
dflim4
Next ⟩
limsuc
Metamath Proof Explorer
Ascii
Unicode
Theorem
dflim4
Description:
An alternate definition of a limit ordinal.
(Contributed by
NM
, 1-Feb-2005)
Ref
Expression
Assertion
dflim4
⊢
Lim
⁡
A
↔
Ord
⁡
A
∧
∅
∈
A
∧
∀
x
∈
A
suc
⁡
x
∈
A
Proof
Step
Hyp
Ref
Expression
1
dflim2
⊢
Lim
⁡
A
↔
Ord
⁡
A
∧
∅
∈
A
∧
A
=
⋃
A
2
ordunisuc2
⊢
Ord
⁡
A
→
A
=
⋃
A
↔
∀
x
∈
A
suc
⁡
x
∈
A
3
2
anbi2d
⊢
Ord
⁡
A
→
∅
∈
A
∧
A
=
⋃
A
↔
∅
∈
A
∧
∀
x
∈
A
suc
⁡
x
∈
A
4
3
pm5.32i
⊢
Ord
⁡
A
∧
∅
∈
A
∧
A
=
⋃
A
↔
Ord
⁡
A
∧
∅
∈
A
∧
∀
x
∈
A
suc
⁡
x
∈
A
5
3anass
⊢
Ord
⁡
A
∧
∅
∈
A
∧
A
=
⋃
A
↔
Ord
⁡
A
∧
∅
∈
A
∧
A
=
⋃
A
6
3anass
⊢
Ord
⁡
A
∧
∅
∈
A
∧
∀
x
∈
A
suc
⁡
x
∈
A
↔
Ord
⁡
A
∧
∅
∈
A
∧
∀
x
∈
A
suc
⁡
x
∈
A
7
4
5
6
3bitr4i
⊢
Ord
⁡
A
∧
∅
∈
A
∧
A
=
⋃
A
↔
Ord
⁡
A
∧
∅
∈
A
∧
∀
x
∈
A
suc
⁡
x
∈
A
8
1
7
bitri
⊢
Lim
⁡
A
↔
Ord
⁡
A
∧
∅
∈
A
∧
∀
x
∈
A
suc
⁡
x
∈
A