Metamath Proof Explorer


Theorem dflim4

Description: An alternate definition of a limit ordinal. (Contributed by NM, 1-Feb-2005)

Ref Expression
Assertion dflim4 Lim A Ord A A x A suc x A

Proof

Step Hyp Ref Expression
1 dflim2 Lim A Ord A A A = A
2 ordunisuc2 Ord A A = A x A suc x A
3 2 anbi2d Ord A A A = A A x A suc x A
4 3 pm5.32i Ord A A A = A Ord A A x A suc x A
5 3anass Ord A A A = A Ord A A A = A
6 3anass Ord A A x A suc x A Ord A A x A suc x A
7 4 5 6 3bitr4i Ord A A A = A Ord A A x A suc x A
8 1 7 bitri Lim A Ord A A x A suc x A