Metamath Proof Explorer


Theorem dfmo

Description: Rederive df-mo from the old definition moeu . (Contributed by Wolf Lammen, 27-May-2019) (Proof modification is discouraged.) Use df-mo instead. (New usage is discouraged.)

Ref Expression
Assertion dfmo * x φ y x φ x = y

Proof

Step Hyp Ref Expression
1 moeu * x φ x φ ∃! x φ
2 eu6 ∃! x φ y x φ x = y
3 2 imbi2i x φ ∃! x φ x φ y x φ x = y
4 dfmoeu x φ y x φ x = y y x φ x = y
5 1 3 4 3bitri * x φ y x φ x = y