Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
dfmpt
Metamath Proof Explorer
Description: Alternate definition for the maps-to notation df-mpt (although it
requires that B be a set). (Contributed by NM , 24-Aug-2010)
(Revised by Mario Carneiro , 30-Dec-2016)
Ref
Expression
Hypothesis
dfmpt.1
⊢ B ∈ V
Assertion
dfmpt
⊢ x ∈ A ⟼ B = ⋃ x ∈ A x B
Proof
Step
Hyp
Ref
Expression
1
dfmpt.1
⊢ B ∈ V
2
dfmpt3
⊢ x ∈ A ⟼ B = ⋃ x ∈ A x × B
3
vex
⊢ x ∈ V
4
3 1
xpsn
⊢ x × B = x B
5
4
a1i
⊢ x ∈ A → x × B = x B
6
5
iuneq2i
⊢ ⋃ x ∈ A x × B = ⋃ x ∈ A x B
7
2 6
eqtri
⊢ x ∈ A ⟼ B = ⋃ x ∈ A x B