Metamath Proof Explorer


Theorem dfmpt3

Description: Alternate definition for the maps-to notation df-mpt . (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Assertion dfmpt3 x A B = x A x × B

Proof

Step Hyp Ref Expression
1 df-mpt x A B = x y | x A y = B
2 velsn y B y = B
3 2 anbi2i x A y B x A y = B
4 3 anbi2i z = x y x A y B z = x y x A y = B
5 4 2exbii x y z = x y x A y B x y z = x y x A y = B
6 eliunxp z x A x × B x y z = x y x A y B
7 elopab z x y | x A y = B x y z = x y x A y = B
8 5 6 7 3bitr4i z x A x × B z x y | x A y = B
9 8 eqriv x A x × B = x y | x A y = B
10 1 9 eqtr4i x A B = x A x × B