Metamath Proof Explorer


Theorem dfnbgr3

Description: Alternate definition of the neighbors of a vertex using the edge function instead of the edges themselves (see also nbgrval ). (Contributed by Alexander van der Vekens, 17-Dec-2017) (Revised by AV, 25-Oct-2020) (Revised by AV, 21-Mar-2021)

Ref Expression
Hypotheses dfnbgr3.v V = Vtx G
dfnbgr3.i I = iEdg G
Assertion dfnbgr3 N V Fun I G NeighbVtx N = n V N | i dom I N n I i

Proof

Step Hyp Ref Expression
1 dfnbgr3.v V = Vtx G
2 dfnbgr3.i I = iEdg G
3 eqid Edg G = Edg G
4 1 3 nbgrval N V G NeighbVtx N = n V N | e Edg G N n e
5 4 adantr N V Fun I G NeighbVtx N = n V N | e Edg G N n e
6 edgval Edg G = ran iEdg G
7 2 eqcomi iEdg G = I
8 7 rneqi ran iEdg G = ran I
9 6 8 eqtri Edg G = ran I
10 9 rexeqi e Edg G N n e e ran I N n e
11 funfn Fun I I Fn dom I
12 11 biimpi Fun I I Fn dom I
13 12 adantl N V Fun I I Fn dom I
14 sseq2 e = I i N n e N n I i
15 14 rexrn I Fn dom I e ran I N n e i dom I N n I i
16 13 15 syl N V Fun I e ran I N n e i dom I N n I i
17 10 16 syl5bb N V Fun I e Edg G N n e i dom I N n I i
18 17 rabbidv N V Fun I n V N | e Edg G N n e = n V N | i dom I N n I i
19 5 18 eqtrd N V Fun I G NeighbVtx N = n V N | i dom I N n I i