Metamath Proof Explorer


Theorem dfnfc2

Description: An alternative statement of the effective freeness of a class A , when it is a set. (Contributed by Mario Carneiro, 14-Oct-2016) (Proof shortened by JJ, 26-Jul-2021)

Ref Expression
Assertion dfnfc2 x A V _ x A y x y = A

Proof

Step Hyp Ref Expression
1 nfcvd _ x A _ x y
2 id _ x A _ x A
3 1 2 nfeqd _ x A x y = A
4 3 alrimiv _ x A y x y = A
5 df-nfc _ x A y x y A
6 velsn y A y = A
7 6 nfbii x y A x y = A
8 7 albii y x y A y x y = A
9 5 8 sylbbr y x y = A _ x A
10 9 nfunid y x y = A _ x A
11 nfa1 x x A V
12 unisng A V A = A
13 12 sps x A V A = A
14 11 13 nfceqdf x A V _ x A _ x A
15 10 14 syl5ib x A V y x y = A _ x A
16 4 15 impbid2 x A V _ x A y x y = A