Step |
Hyp |
Ref |
Expression |
1 |
|
odf1.1 |
|
2 |
|
odf1.2 |
|
3 |
|
odf1.3 |
|
4 |
|
odf1.4 |
|
5 |
|
fzfid |
|
6 |
1 3
|
mulgcl |
|
7 |
6
|
3expa |
|
8 |
7
|
an32s |
|
9 |
8
|
adantlr |
|
10 |
9 4
|
fmptd |
|
11 |
|
frn |
|
12 |
1
|
fvexi |
|
13 |
12
|
ssex |
|
14 |
10 11 13
|
3syl |
|
15 |
|
elfzelz |
|
16 |
15
|
adantl |
|
17 |
|
ovex |
|
18 |
|
oveq1 |
|
19 |
4 18
|
elrnmpt1s |
|
20 |
16 17 19
|
sylancl |
|
21 |
20
|
ralrimiva |
|
22 |
|
zmodfz |
|
23 |
22
|
ancoms |
|
24 |
23
|
adantll |
|
25 |
|
simpllr |
|
26 |
|
simplr |
|
27 |
15
|
adantl |
|
28 |
|
moddvds |
|
29 |
25 26 27 28
|
syl3anc |
|
30 |
27
|
zred |
|
31 |
25
|
nnrpd |
|
32 |
|
0z |
|
33 |
|
nnz |
|
34 |
33
|
adantl |
|
35 |
34
|
adantr |
|
36 |
|
elfzm11 |
|
37 |
32 35 36
|
sylancr |
|
38 |
37
|
biimpa |
|
39 |
38
|
simp2d |
|
40 |
38
|
simp3d |
|
41 |
|
modid |
|
42 |
30 31 39 40 41
|
syl22anc |
|
43 |
42
|
eqeq2d |
|
44 |
|
eqcom |
|
45 |
43 44
|
bitrdi |
|
46 |
|
simp-4l |
|
47 |
|
simp-4r |
|
48 |
|
eqid |
|
49 |
1 2 3 48
|
odcong |
|
50 |
46 47 26 27 49
|
syl112anc |
|
51 |
29 45 50
|
3bitr3rd |
|
52 |
51
|
ralrimiva |
|
53 |
|
reu6i |
|
54 |
24 52 53
|
syl2anc |
|
55 |
54
|
ralrimiva |
|
56 |
|
ovex |
|
57 |
56
|
rgenw |
|
58 |
|
eqeq1 |
|
59 |
58
|
reubidv |
|
60 |
4 59
|
ralrnmptw |
|
61 |
57 60
|
ax-mp |
|
62 |
55 61
|
sylibr |
|
63 |
|
eqid |
|
64 |
63
|
f1ompt |
|
65 |
21 62 64
|
sylanbrc |
|
66 |
|
f1oen2g |
|
67 |
5 14 65 66
|
syl3anc |
|
68 |
|
enfi |
|
69 |
67 68
|
syl |
|
70 |
5 69
|
mpbid |
|
71 |
70
|
iftrued |
|
72 |
|
fz01en |
|
73 |
|
ensym |
|
74 |
34 72 73
|
3syl |
|
75 |
|
entr |
|
76 |
74 67 75
|
syl2anc |
|
77 |
|
fzfid |
|
78 |
|
hashen |
|
79 |
77 70 78
|
syl2anc |
|
80 |
76 79
|
mpbird |
|
81 |
|
nnnn0 |
|
82 |
81
|
adantl |
|
83 |
|
hashfz1 |
|
84 |
82 83
|
syl |
|
85 |
71 80 84
|
3eqtr2rd |
|
86 |
|
simp3 |
|
87 |
1 2 3 4
|
odinf |
|
88 |
87
|
iffalsed |
|
89 |
86 88
|
eqtr4d |
|
90 |
89
|
3expa |
|
91 |
1 2
|
odcl |
|
92 |
91
|
adantl |
|
93 |
|
elnn0 |
|
94 |
92 93
|
sylib |
|
95 |
85 90 94
|
mpjaodan |
|