Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Even and odd numbers
Definitions and basic properties
dfodd2
Next ⟩
dfodd6
Metamath Proof Explorer
Ascii
Unicode
Theorem
dfodd2
Description:
Alternate definition for odd numbers.
(Contributed by
AV
, 15-Jun-2020)
Ref
Expression
Assertion
dfodd2
⊢
Odd
=
z
∈
ℤ
|
z
−
1
2
∈
ℤ
Proof
Step
Hyp
Ref
Expression
1
isodd2
⊢
x
∈
Odd
↔
x
∈
ℤ
∧
x
−
1
2
∈
ℤ
2
oveq1
⊢
z
=
x
→
z
−
1
=
x
−
1
3
2
oveq1d
⊢
z
=
x
→
z
−
1
2
=
x
−
1
2
4
3
eleq1d
⊢
z
=
x
→
z
−
1
2
∈
ℤ
↔
x
−
1
2
∈
ℤ
5
4
elrab
⊢
x
∈
z
∈
ℤ
|
z
−
1
2
∈
ℤ
↔
x
∈
ℤ
∧
x
−
1
2
∈
ℤ
6
1
5
bitr4i
⊢
x
∈
Odd
↔
x
∈
z
∈
ℤ
|
z
−
1
2
∈
ℤ
7
6
eqriv
⊢
Odd
=
z
∈
ℤ
|
z
−
1
2
∈
ℤ