Metamath Proof Explorer


Theorem dfodd2

Description: Alternate definition for odd numbers. (Contributed by AV, 15-Jun-2020)

Ref Expression
Assertion dfodd2 Odd = z | z 1 2

Proof

Step Hyp Ref Expression
1 isodd2 x Odd x x 1 2
2 oveq1 z = x z 1 = x 1
3 2 oveq1d z = x z 1 2 = x 1 2
4 3 eleq1d z = x z 1 2 x 1 2
5 4 elrab x z | z 1 2 x x 1 2
6 1 5 bitr4i x Odd x z | z 1 2
7 6 eqriv Odd = z | z 1 2