Metamath Proof Explorer


Theorem dfom4

Description: A simplification of df-om assuming the Axiom of Infinity. (Contributed by NM, 30-May-2003)

Ref Expression
Assertion dfom4 ω = x | y Lim y x y

Proof

Step Hyp Ref Expression
1 elom3 x ω y Lim y x y
2 1 abbi2i ω = x | y Lim y x y