Metamath Proof Explorer


Theorem dfopg

Description: Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015) (Avoid depending on this detail.)

Ref Expression
Assertion dfopg A V B W A B = A A B

Proof

Step Hyp Ref Expression
1 elex A V A V
2 elex B W B V
3 dfopif A B = if A V B V A A B
4 iftrue A V B V if A V B V A A B = A A B
5 3 4 eqtrid A V B V A B = A A B
6 1 2 5 syl2an A V B W A B = A A B