Metamath Proof Explorer


Theorem dfopif

Description: Rewrite df-op using if . When both arguments are sets, it reduces to the standard Kuratowski definition; otherwise, it is defined to be the empty set. Avoid directly depending on this detail so that theorems will not depend on the Kuratowski construction. (Contributed by Mario Carneiro, 26-Apr-2015) Avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 1-Aug-2024) (Avoid depending on this detail.)

Ref Expression
Assertion dfopif A B = if A V B V A A B

Proof

Step Hyp Ref Expression
1 noel ¬ x
2 1 intnan ¬ ¬ A V B V x
3 biorf ¬ ¬ A V B V x A V B V x A A B ¬ A V B V x A V B V x A A B
4 2 3 ax-mp A V B V x A A B ¬ A V B V x A V B V x A A B
5 df-3an A V B V x A A B A V B V x A A B
6 orcom A V B V x A A B ¬ A V B V x ¬ A V B V x A V B V x A A B
7 4 5 6 3bitr4i A V B V x A A B A V B V x A A B ¬ A V B V x
8 eleq1 y = x y A A B x A A B
9 8 3anbi3d y = x A V B V y A A B A V B V x A A B
10 df-op A B = y | A V B V y A A B
11 9 10 elab2g x V x A B A V B V x A A B
12 11 elv x A B A V B V x A A B
13 elif x if A V B V A A B A V B V x A A B ¬ A V B V x
14 7 12 13 3bitr4i x A B x if A V B V A A B
15 14 eqriv A B = if A V B V A A B