Metamath Proof Explorer


Theorem dfopifOLD

Description: Obsolete version of dfopif as of 1-Aug-2024. (Contributed by Mario Carneiro, 26-Apr-2015) (Avoid depending on this detail.) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion dfopifOLD A B = if A V B V A A B

Proof

Step Hyp Ref Expression
1 df-op A B = x | A V B V x A A B
2 df-3an A V B V x A A B A V B V x A A B
3 2 abbii x | A V B V x A A B = x | A V B V x A A B
4 iftrue A V B V if A V B V A A B = A A B
5 ibar A V B V x A A B A V B V x A A B
6 5 abbi2dv A V B V A A B = x | A V B V x A A B
7 4 6 eqtr2d A V B V x | A V B V x A A B = if A V B V A A B
8 pm2.21 ¬ A V B V A V B V x
9 8 adantrd ¬ A V B V A V B V x A A B x
10 9 abssdv ¬ A V B V x | A V B V x A A B
11 ss0 x | A V B V x A A B x | A V B V x A A B =
12 10 11 syl ¬ A V B V x | A V B V x A A B =
13 iffalse ¬ A V B V if A V B V A A B =
14 12 13 eqtr4d ¬ A V B V x | A V B V x A A B = if A V B V A A B
15 7 14 pm2.61i x | A V B V x A A B = if A V B V A A B
16 1 3 15 3eqtri A B = if A V B V A A B