Metamath Proof Explorer


Theorem dfoprab3

Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008)

Ref Expression
Hypothesis dfoprab3.1 w = x y φ ψ
Assertion dfoprab3 w z | w V × V φ = x y z | ψ

Proof

Step Hyp Ref Expression
1 dfoprab3.1 w = x y φ ψ
2 dfoprab3s x y z | ψ = w z | w V × V [˙ 1 st w / x]˙ [˙ 2 nd w / y]˙ ψ
3 fvex 1 st w V
4 fvex 2 nd w V
5 eqcom x = 1 st w 1 st w = x
6 eqcom y = 2 nd w 2 nd w = y
7 5 6 anbi12i x = 1 st w y = 2 nd w 1 st w = x 2 nd w = y
8 eqopi w V × V 1 st w = x 2 nd w = y w = x y
9 7 8 sylan2b w V × V x = 1 st w y = 2 nd w w = x y
10 9 1 syl w V × V x = 1 st w y = 2 nd w φ ψ
11 10 bicomd w V × V x = 1 st w y = 2 nd w ψ φ
12 11 ex w V × V x = 1 st w y = 2 nd w ψ φ
13 3 4 12 sbc2iedv w V × V [˙ 1 st w / x]˙ [˙ 2 nd w / y]˙ ψ φ
14 13 pm5.32i w V × V [˙ 1 st w / x]˙ [˙ 2 nd w / y]˙ ψ w V × V φ
15 14 opabbii w z | w V × V [˙ 1 st w / x]˙ [˙ 2 nd w / y]˙ ψ = w z | w V × V φ
16 2 15 eqtr2i w z | w V × V φ = x y z | ψ