Metamath Proof Explorer


Theorem dfoprab3s

Description: A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion dfoprab3s xyz|φ=wz|wV×V[˙1stw/x]˙[˙2ndw/y]˙φ

Proof

Step Hyp Ref Expression
1 dfoprab2 xyz|φ=wz|xyw=xyφ
2 nfsbc1v x[˙1stw/x]˙[˙2ndw/y]˙φ
3 2 19.41 xyw=xy[˙1stw/x]˙[˙2ndw/y]˙φxyw=xy[˙1stw/x]˙[˙2ndw/y]˙φ
4 sbcopeq1a w=xy[˙1stw/x]˙[˙2ndw/y]˙φφ
5 4 pm5.32i w=xy[˙1stw/x]˙[˙2ndw/y]˙φw=xyφ
6 5 exbii yw=xy[˙1stw/x]˙[˙2ndw/y]˙φyw=xyφ
7 nfcv _y1stw
8 nfsbc1v y[˙2ndw/y]˙φ
9 7 8 nfsbcw y[˙1stw/x]˙[˙2ndw/y]˙φ
10 9 19.41 yw=xy[˙1stw/x]˙[˙2ndw/y]˙φyw=xy[˙1stw/x]˙[˙2ndw/y]˙φ
11 6 10 bitr3i yw=xyφyw=xy[˙1stw/x]˙[˙2ndw/y]˙φ
12 11 exbii xyw=xyφxyw=xy[˙1stw/x]˙[˙2ndw/y]˙φ
13 elvv wV×Vxyw=xy
14 13 anbi1i wV×V[˙1stw/x]˙[˙2ndw/y]˙φxyw=xy[˙1stw/x]˙[˙2ndw/y]˙φ
15 3 12 14 3bitr4i xyw=xyφwV×V[˙1stw/x]˙[˙2ndw/y]˙φ
16 15 opabbii wz|xyw=xyφ=wz|wV×V[˙1stw/x]˙[˙2ndw/y]˙φ
17 1 16 eqtri xyz|φ=wz|wV×V[˙1stw/x]˙[˙2ndw/y]˙φ