Metamath Proof Explorer


Theorem dfoprab4

Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 3-Sep-2007) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis dfoprab4.1 w = x y φ ψ
Assertion dfoprab4 w z | w A × B φ = x y z | x A y B ψ

Proof

Step Hyp Ref Expression
1 dfoprab4.1 w = x y φ ψ
2 xpss A × B V × V
3 2 sseli w A × B w V × V
4 3 adantr w A × B φ w V × V
5 4 pm4.71ri w A × B φ w V × V w A × B φ
6 5 opabbii w z | w A × B φ = w z | w V × V w A × B φ
7 eleq1 w = x y w A × B x y A × B
8 opelxp x y A × B x A y B
9 7 8 bitrdi w = x y w A × B x A y B
10 9 1 anbi12d w = x y w A × B φ x A y B ψ
11 10 dfoprab3 w z | w V × V w A × B φ = x y z | x A y B ψ
12 6 11 eqtri w z | w A × B φ = x y z | x A y B ψ