Metamath Proof Explorer


Theorem dfpred2

Description: An alternate definition of predecessor class when X is a set. (Contributed by Scott Fenton, 8-Feb-2011)

Ref Expression
Hypothesis dfpred2.1 X V
Assertion dfpred2 Pred R A X = A y | y R X

Proof

Step Hyp Ref Expression
1 dfpred2.1 X V
2 df-pred Pred R A X = A R -1 X
3 iniseg X V R -1 X = y | y R X
4 1 3 ax-mp R -1 X = y | y R X
5 4 ineq2i A R -1 X = A y | y R X
6 2 5 eqtri Pred R A X = A y | y R X