Metamath Proof Explorer


Theorem dfpred3

Description: An alternate definition of predecessor class when X is a set. (Contributed by Scott Fenton, 13-Jun-2018)

Ref Expression
Hypothesis dfpred2.1 X V
Assertion dfpred3 Pred R A X = y A | y R X

Proof

Step Hyp Ref Expression
1 dfpred2.1 X V
2 incom A y | y R X = y | y R X A
3 1 dfpred2 Pred R A X = A y | y R X
4 dfrab2 y A | y R X = y | y R X A
5 2 3 4 3eqtr4i Pred R A X = y A | y R X