Metamath Proof Explorer


Theorem dfpred3g

Description: An alternate definition of predecessor class when X is a set. (Contributed by Scott Fenton, 13-Jun-2018)

Ref Expression
Assertion dfpred3g X V Pred R A X = y A | y R X

Proof

Step Hyp Ref Expression
1 predeq3 x = X Pred R A x = Pred R A X
2 breq2 x = X y R x y R X
3 2 rabbidv x = X y A | y R x = y A | y R X
4 1 3 eqeq12d x = X Pred R A x = y A | y R x Pred R A X = y A | y R X
5 vex x V
6 5 dfpred3 Pred R A x = y A | y R x
7 4 6 vtoclg X V Pred R A X = y A | y R X