Metamath Proof Explorer


Theorem dfprm2

Description: The positive irreducible elements of ZZ are the prime numbers. This is an alternative way to define Prime . (Contributed by Mario Carneiro, 5-Dec-2014) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypothesis prmirred.i I = Irred ring
Assertion dfprm2 = I

Proof

Step Hyp Ref Expression
1 prmirred.i I = Irred ring
2 prmnn x x
3 1 prmirredlem x x I x
4 3 bicomd x x x I
5 2 4 biadanii x x x I
6 elin x I x x I
7 5 6 bitr4i x x I
8 7 eqriv = I