Metamath Proof Explorer


Theorem dfral2

Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997) Allow shortening of rexnal . (Revised by Wolf Lammen, 9-Dec-2019)

Ref Expression
Assertion dfral2 x A φ ¬ x A ¬ φ

Proof

Step Hyp Ref Expression
1 notnotb φ ¬ ¬ φ
2 1 ralbii x A φ x A ¬ ¬ φ
3 ralnex x A ¬ ¬ φ ¬ x A ¬ φ
4 2 3 bitri x A φ ¬ x A ¬ φ