Metamath Proof Explorer


Theorem dfrel4

Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 for relations. (Contributed by Mario Carneiro, 16-Aug-2015) (Revised by Thierry Arnoux, 11-May-2017)

Ref Expression
Hypotheses dfrel4.1 _ x R
dfrel4.2 _ y R
Assertion dfrel4 Rel R R = x y | x R y

Proof

Step Hyp Ref Expression
1 dfrel4.1 _ x R
2 dfrel4.2 _ y R
3 dfrel4v Rel R R = a b | a R b
4 nfcv _ x a
5 nfcv _ x b
6 4 1 5 nfbr x a R b
7 nfcv _ y a
8 nfcv _ y b
9 7 2 8 nfbr y a R b
10 nfv a x R y
11 nfv b x R y
12 breq12 a = x b = y a R b x R y
13 6 9 10 11 12 cbvopab a b | a R b = x y | x R y
14 13 eqeq2i R = a b | a R b R = x y | x R y
15 3 14 bitri Rel R R = x y | x R y