Metamath Proof Explorer


Theorem dfres2

Description: Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013)

Ref Expression
Assertion dfres2 R A = x y | x A x R y

Proof

Step Hyp Ref Expression
1 relres Rel R A
2 relopabv Rel x y | x A x R y
3 vex z V
4 vex w V
5 eleq1w x = z x A z A
6 breq1 x = z x R y z R y
7 5 6 anbi12d x = z x A x R y z A z R y
8 breq2 y = w z R y z R w
9 8 anbi2d y = w z A z R y z A z R w
10 3 4 7 9 opelopab z w x y | x A x R y z A z R w
11 4 brresi z R A w z A z R w
12 df-br z R A w z w R A
13 10 11 12 3bitr2ri z w R A z w x y | x A x R y
14 1 2 13 eqrelriiv R A = x y | x A x R y