Metamath Proof Explorer


Theorem dfres3

Description: Alternate definition of restriction. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion dfres3 A B = A B × ran A

Proof

Step Hyp Ref Expression
1 df-res A B = A B × V
2 eleq1 x = y z x A y z A
3 vex z V
4 3 biantru y B y B z V
5 vex y V
6 5 3 opelrn y z A z ran A
7 6 biantrud y z A y B y B z ran A
8 4 7 bitr3id y z A y B z V y B z ran A
9 2 8 syl6bi x = y z x A y B z V y B z ran A
10 9 com12 x A x = y z y B z V y B z ran A
11 10 pm5.32d x A x = y z y B z V x = y z y B z ran A
12 11 2exbidv x A y z x = y z y B z V y z x = y z y B z ran A
13 elxp x B × V y z x = y z y B z V
14 elxp x B × ran A y z x = y z y B z ran A
15 12 13 14 3bitr4g x A x B × V x B × ran A
16 15 pm5.32i x A x B × V x A x B × ran A
17 elin x A B × ran A x A x B × ran A
18 16 17 bitr4i x A x B × V x A B × ran A
19 18 ineqri A B × V = A B × ran A
20 1 19 eqtri A B = A B × ran A