Metamath Proof Explorer


Theorem dfrn2

Description: Alternate definition of range. Definition 4 of Suppes p. 60. (Contributed by NM, 27-Dec-1996)

Ref Expression
Assertion dfrn2 ran A = y | x x A y

Proof

Step Hyp Ref Expression
1 df-rn ran A = dom A -1
2 df-dm dom A -1 = y | x y A -1 x
3 vex y V
4 vex x V
5 3 4 brcnv y A -1 x x A y
6 5 exbii x y A -1 x x x A y
7 6 abbii y | x y A -1 x = y | x x A y
8 1 2 7 3eqtri ran A = y | x x A y