Metamath Proof Explorer


Theorem dfrn3

Description: Alternate definition of range. Definition 6.5(2) of TakeutiZaring p. 24. (Contributed by NM, 28-Dec-1996)

Ref Expression
Assertion dfrn3 ran A = y | x x y A

Proof

Step Hyp Ref Expression
1 dfrn2 ran A = y | x x A y
2 df-br x A y x y A
3 2 exbii x x A y x x y A
4 3 abbii y | x x A y = y | x x y A
5 1 4 eqtri ran A = y | x x y A