Metamath Proof Explorer


Theorem dfrnf

Description: Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses dfrnf.1 _ x A
dfrnf.2 _ y A
Assertion dfrnf ran A = y | x x A y

Proof

Step Hyp Ref Expression
1 dfrnf.1 _ x A
2 dfrnf.2 _ y A
3 dfrn2 ran A = w | v v A w
4 nfcv _ x v
5 nfcv _ x w
6 4 1 5 nfbr x v A w
7 nfv v x A w
8 breq1 v = x v A w x A w
9 6 7 8 cbvexv1 v v A w x x A w
10 9 abbii w | v v A w = w | x x A w
11 nfcv _ y x
12 nfcv _ y w
13 11 2 12 nfbr y x A w
14 13 nfex y x x A w
15 nfv w x x A y
16 breq2 w = y x A w x A y
17 16 exbidv w = y x x A w x x A y
18 14 15 17 cbvabw w | x x A w = y | x x A y
19 3 10 18 3eqtri ran A = y | x x A y