Metamath Proof Explorer


Theorem dfsb1

Description: Alternate definition of substitution. Remark 9.1 in Megill p. 447 (p. 15 of the preprint). This was the original definition before df-sb . Note that it does not require dummy variables in its definiens; this is done by having x free in the first conjunct and bound in the second. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by BJ, 9-Jul-2023) Revise df-sb . (Revised by Wolf Lammen, 29-Jul-2023) (New usage is discouraged.)

Ref Expression
Assertion dfsb1 y x φ x = y φ x x = y φ

Proof

Step Hyp Ref Expression
1 sbequ2 x = y y x φ φ
2 1 com12 y x φ x = y φ
3 sb1 y x φ x x = y φ
4 2 3 jca y x φ x = y φ x x = y φ
5 id x = y x = y
6 sbequ1 x = y φ y x φ
7 5 6 embantd x = y x = y φ y x φ
8 7 sps x x = y x = y φ y x φ
9 8 adantrd x x = y x = y φ x x = y φ y x φ
10 sb3 ¬ x x = y x x = y φ y x φ
11 10 adantld ¬ x x = y x = y φ x x = y φ y x φ
12 9 11 pm2.61i x = y φ x x = y φ y x φ
13 4 12 impbii y x φ x = y φ x x = y φ