Metamath Proof Explorer


Theorem dfsb3

Description: An alternate definition of proper substitution df-sb that uses only primitive connectives (no defined terms) on the right-hand side. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 6-Mar-2007) (New usage is discouraged.)

Ref Expression
Assertion dfsb3 y x φ x = y ¬ φ x x = y φ

Proof

Step Hyp Ref Expression
1 df-or x = y φ x x = y φ ¬ x = y φ x x = y φ
2 dfsb2 y x φ x = y φ x x = y φ
3 imnan x = y ¬ φ ¬ x = y φ
4 3 imbi1i x = y ¬ φ x x = y φ ¬ x = y φ x x = y φ
5 1 2 4 3bitr4i y x φ x = y ¬ φ x x = y φ