Metamath Proof Explorer


Theorem dfse2

Description: Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015)

Ref Expression
Assertion dfse2 R Se A x A A R -1 x V

Proof

Step Hyp Ref Expression
1 df-se R Se A x A y A | y R x V
2 dfrab3 y A | y R x = A y | y R x
3 iniseg x V R -1 x = y | y R x
4 3 elv R -1 x = y | y R x
5 4 ineq2i A R -1 x = A y | y R x
6 2 5 eqtr4i y A | y R x = A R -1 x
7 6 eleq1i y A | y R x V A R -1 x V
8 7 ralbii x A y A | y R x V x A A R -1 x V
9 1 8 bitri R Se A x A A R -1 x V