Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
dfse2
Next ⟩
imass1
Metamath Proof Explorer
Ascii
Unicode
Theorem
dfse2
Description:
Alternate definition of set-like relation.
(Contributed by
Mario Carneiro
, 23-Jun-2015)
Ref
Expression
Assertion
dfse2
⊢
R
Se
A
↔
∀
x
∈
A
A
∩
R
-1
x
∈
V
Proof
Step
Hyp
Ref
Expression
1
df-se
⊢
R
Se
A
↔
∀
x
∈
A
y
∈
A
|
y
R
x
∈
V
2
dfrab3
⊢
y
∈
A
|
y
R
x
=
A
∩
y
|
y
R
x
3
iniseg
⊢
x
∈
V
→
R
-1
x
=
y
|
y
R
x
4
3
elv
⊢
R
-1
x
=
y
|
y
R
x
5
4
ineq2i
⊢
A
∩
R
-1
x
=
A
∩
y
|
y
R
x
6
2
5
eqtr4i
⊢
y
∈
A
|
y
R
x
=
A
∩
R
-1
x
7
6
eleq1i
⊢
y
∈
A
|
y
R
x
∈
V
↔
A
∩
R
-1
x
∈
V
8
7
ralbii
⊢
∀
x
∈
A
y
∈
A
|
y
R
x
∈
V
↔
∀
x
∈
A
A
∩
R
-1
x
∈
V
9
1
8
bitri
⊢
R
Se
A
↔
∀
x
∈
A
A
∩
R
-1
x
∈
V