Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
dfss3f
Metamath Proof Explorer
Description: Equivalence for subclass relation, using bound-variable hypotheses
instead of distinct variable conditions. (Contributed by NM , 20-Mar-2004)
Ref
Expression
Hypotheses
dfss2f.1
⊢ Ⅎ _ x A
dfss2f.2
⊢ Ⅎ _ x B
Assertion
dfss3f
⊢ A ⊆ B ↔ ∀ x ∈ A x ∈ B
Proof
Step
Hyp
Ref
Expression
1
dfss2f.1
⊢ Ⅎ _ x A
2
dfss2f.2
⊢ Ⅎ _ x B
3
1 2
dfss2f
⊢ A ⊆ B ↔ ∀ x x ∈ A → x ∈ B
4
df-ral
⊢ ∀ x ∈ A x ∈ B ↔ ∀ x x ∈ A → x ∈ B
5
3 4
bitr4i
⊢ A ⊆ B ↔ ∀ x ∈ A x ∈ B