Metamath Proof Explorer


Theorem dfss4

Description: Subclass defined in terms of class difference. See comments under dfun2 . (Contributed by NM, 22-Mar-1998) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion dfss4 A B B B A = A

Proof

Step Hyp Ref Expression
1 sseqin2 A B B A = A
2 eldif x B A x B ¬ x A
3 2 notbii ¬ x B A ¬ x B ¬ x A
4 3 anbi2i x B ¬ x B A x B ¬ x B ¬ x A
5 elin x B A x B x A
6 abai x B x A x B x B x A
7 iman x B x A ¬ x B ¬ x A
8 7 anbi2i x B x B x A x B ¬ x B ¬ x A
9 5 6 8 3bitri x B A x B ¬ x B ¬ x A
10 4 9 bitr4i x B ¬ x B A x B A
11 10 difeqri B B A = B A
12 11 eqeq1i B B A = A B A = A
13 1 12 bitr4i A B B B A = A