Metamath Proof Explorer


Theorem dfss5

Description: Alternate definition of subclass relationship: a class A is a subclass of another class B iff each element of A is equal to an element of B . (Contributed by AV, 13-Nov-2020)

Ref Expression
Assertion dfss5 A B x A y B x = y

Proof

Step Hyp Ref Expression
1 dfss3 A B x A x B
2 clel5 x B y B x = y
3 2 ralbii x A x B x A y B x = y
4 1 3 bitri A B x A y B x = y