Metamath Proof Explorer


Theorem dfsymdif3

Description: Alternate definition of the symmetric difference, given in Example 4.1 of Stoll p. 262 (the original definition corresponds to Stoll p. 13). (Contributed by NM, 17-Aug-2004) (Revised by BJ, 30-Apr-2020)

Ref Expression
Assertion dfsymdif3 A B = A B A B

Proof

Step Hyp Ref Expression
1 difin A A B = A B
2 incom A B = B A
3 2 difeq2i B A B = B B A
4 difin B B A = B A
5 3 4 eqtri B A B = B A
6 1 5 uneq12i A A B B A B = A B B A
7 difundir A B A B = A A B B A B
8 df-symdif A B = A B B A
9 6 7 8 3eqtr4ri A B = A B A B