Metamath Proof Explorer


Theorem dftr3

Description: An alternate way of defining a transitive class. Definition 7.1 of TakeutiZaring p. 35. (Contributed by NM, 29-Aug-1993)

Ref Expression
Assertion dftr3 Tr A x A x A

Proof

Step Hyp Ref Expression
1 dftr5 Tr A x A y x y A
2 dfss3 x A y x y A
3 2 ralbii x A x A x A y x y A
4 1 3 bitr4i Tr A x A x A