Metamath Proof Explorer


Theorem dfttrcl2

Description: When R is a set and a relation, then its transitive closure can be defined by an intersection. (Contributed by Scott Fenton, 26-Oct-2024)

Ref Expression
Assertion dfttrcl2 R V Rel R t++ R = z | R z z z z

Proof

Step Hyp Ref Expression
1 ssintab t++ R z | R z z z z z R z z z z t++ R z
2 ttrclss R z z z z t++ R z
3 1 2 mpgbir t++ R z | R z z z z
4 3 a1i R V Rel R t++ R z | R z z z z
5 rabab z V | R z z z z = z | R z z z z
6 5 inteqi z V | R z z z z = z | R z z z z
7 ttrclexg R V t++ R V
8 ssttrcl Rel R R t++ R
9 ttrcltr t++ R t++ R t++ R
10 8 9 jctir Rel R R t++ R t++ R t++ R t++ R
11 sseq2 z = t++ R R z R t++ R
12 coeq1 z = t++ R z z = t++ R z
13 coeq2 z = t++ R t++ R z = t++ R t++ R
14 12 13 eqtrd z = t++ R z z = t++ R t++ R
15 id z = t++ R z = t++ R
16 14 15 sseq12d z = t++ R z z z t++ R t++ R t++ R
17 11 16 anbi12d z = t++ R R z z z z R t++ R t++ R t++ R t++ R
18 17 intminss t++ R V R t++ R t++ R t++ R t++ R z V | R z z z z t++ R
19 7 10 18 syl2an R V Rel R z V | R z z z z t++ R
20 6 19 eqsstrrid R V Rel R z | R z z z z t++ R
21 4 20 eqssd R V Rel R t++ R = z | R z z z z