Database
BASIC ALGEBRAIC STRUCTURES
Rings
Ring unit
dfur2
Metamath Proof Explorer
Description: The multiplicative identity is the unique element of the ring that is
left- and right-neutral on all elements under multiplication.
(Contributed by Mario Carneiro , 10-Jan-2015)
Ref
Expression
Hypotheses
dfur2.b
⊢ B = Base R
dfur2.t
⊢ · ˙ = ⋅ R
dfur2.u
⊢ 1 ˙ = 1 R
Assertion
dfur2
⊢ 1 ˙ = ι e | e ∈ B ∧ ∀ x ∈ B e · ˙ x = x ∧ x · ˙ e = x
Proof
Step
Hyp
Ref
Expression
1
dfur2.b
⊢ B = Base R
2
dfur2.t
⊢ · ˙ = ⋅ R
3
dfur2.u
⊢ 1 ˙ = 1 R
4
eqid
⊢ mulGrp R = mulGrp R
5
4 1
mgpbas
⊢ B = Base mulGrp R
6
4 2
mgpplusg
⊢ · ˙ = + mulGrp R
7
4 3
ringidval
⊢ 1 ˙ = 0 mulGrp R
8
5 6 7
grpidval
⊢ 1 ˙ = ι e | e ∈ B ∧ ∀ x ∈ B e · ˙ x = x ∧ x · ˙ e = x