Metamath Proof Explorer


Theorem dfur2

Description: The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses dfur2.b B = Base R
dfur2.t · ˙ = R
dfur2.u 1 ˙ = 1 R
Assertion dfur2 1 ˙ = ι e | e B x B e · ˙ x = x x · ˙ e = x

Proof

Step Hyp Ref Expression
1 dfur2.b B = Base R
2 dfur2.t · ˙ = R
3 dfur2.u 1 ˙ = 1 R
4 eqid mulGrp R = mulGrp R
5 4 1 mgpbas B = Base mulGrp R
6 4 2 mgpplusg · ˙ = + mulGrp R
7 4 3 ringidval 1 ˙ = 0 mulGrp R
8 5 6 7 grpidval 1 ˙ = ι e | e B x B e · ˙ x = x x · ˙ e = x