Metamath Proof Explorer


Theorem dfvd2ani

Description: Inference form of dfvd2an . (Contributed by Alan Sare, 23-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis dfvd2ani.1 φ ψ χ
Assertion dfvd2ani φ ψ χ

Proof

Step Hyp Ref Expression
1 dfvd2ani.1 φ ψ χ
2 dfvd2an φ ψ χ φ ψ χ
3 1 2 mpbi φ ψ χ