Metamath Proof Explorer


Theorem dfvd2i

Description: Inference form of dfvd2 . (Contributed by Alan Sare, 14-Nov-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis dfvd2i.1 φ , ψ χ
Assertion dfvd2i φ ψ χ

Proof

Step Hyp Ref Expression
1 dfvd2i.1 φ , ψ χ
2 dfvd2 φ , ψ χ φ ψ χ
3 1 2 mpbi φ ψ χ