Metamath Proof Explorer


Theorem dfvd2ir

Description: Right-to-left inference form of dfvd2 . (Contributed by Alan Sare, 14-Nov-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis dfvd2ir.1 φ ψ χ
Assertion dfvd2ir φ , ψ χ

Proof

Step Hyp Ref Expression
1 dfvd2ir.1 φ ψ χ
2 dfvd2 φ , ψ χ φ ψ χ
3 1 2 mpbir φ , ψ χ