Metamath Proof Explorer


Theorem dfvd3i

Description: Inference form of dfvd3 . (Contributed by Alan Sare, 14-Nov-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis dfvd3i.1 φ , ψ , χ θ
Assertion dfvd3i φ ψ χ θ

Proof

Step Hyp Ref Expression
1 dfvd3i.1 φ , ψ , χ θ
2 dfvd3 φ , ψ , χ θ φ ψ χ θ
3 1 2 mpbi φ ψ χ θ