Metamath Proof Explorer


Theorem dfxp3

Description: Define the Cartesian product of three classes. Compare df-xp . (Contributed by FL, 6-Nov-2013) (Proof shortened by Mario Carneiro, 3-Nov-2015)

Ref Expression
Assertion dfxp3 A × B × C = x y z | x A y B z C

Proof

Step Hyp Ref Expression
1 biidd u = x y z C z C
2 1 dfoprab4 u z | u A × B z C = x y z | x A y B z C
3 df-xp A × B × C = u z | u A × B z C
4 df-3an x A y B z C x A y B z C
5 4 oprabbii x y z | x A y B z C = x y z | x A y B z C
6 2 3 5 3eqtr4i A × B × C = x y z | x A y B z C