Metamath Proof Explorer


Theorem dfz2

Description: Alternative definition of the integers, based on elz2 . (Contributed by Mario Carneiro, 16-May-2014)

Ref Expression
Assertion dfz2 = ×

Proof

Step Hyp Ref Expression
1 elz2 x y z x = y z
2 subf : ×
3 ffn : × Fn ×
4 2 3 ax-mp Fn ×
5 nnsscn
6 xpss12 × ×
7 5 5 6 mp2an × ×
8 ovelimab Fn × × × x × y z x = y z
9 4 7 8 mp2an x × y z x = y z
10 1 9 bitr4i x x ×
11 10 eqriv = ×