Metamath Proof Explorer


Theorem dgr1term

Description: The degree of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypothesis coe1term.1 F = z A z N
Assertion dgr1term A A 0 N 0 deg F = N

Proof

Step Hyp Ref Expression
1 coe1term.1 F = z A z N
2 1 coe1termlem A N 0 coeff F = n 0 if n = N A 0 A 0 deg F = N
3 2 simprd A N 0 A 0 deg F = N
4 3 3impia A N 0 A 0 deg F = N
5 4 3com23 A A 0 N 0 deg F = N