Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Elementary properties of complex polynomials
dgr1term
Next ⟩
plycn
Metamath Proof Explorer
Ascii
Unicode
Theorem
dgr1term
Description:
The degree of a monomial.
(Contributed by
Mario Carneiro
, 26-Jul-2014)
Ref
Expression
Hypothesis
coe1term.1
⊢
F
=
z
∈
ℂ
⟼
A
⁢
z
N
Assertion
dgr1term
⊢
A
∈
ℂ
∧
A
≠
0
∧
N
∈
ℕ
0
→
deg
⁡
F
=
N
Proof
Step
Hyp
Ref
Expression
1
coe1term.1
⊢
F
=
z
∈
ℂ
⟼
A
⁢
z
N
2
1
coe1termlem
⊢
A
∈
ℂ
∧
N
∈
ℕ
0
→
coeff
⁡
F
=
n
∈
ℕ
0
⟼
if
n
=
N
A
0
∧
A
≠
0
→
deg
⁡
F
=
N
3
2
simprd
⊢
A
∈
ℂ
∧
N
∈
ℕ
0
→
A
≠
0
→
deg
⁡
F
=
N
4
3
3impia
⊢
A
∈
ℂ
∧
N
∈
ℕ
0
∧
A
≠
0
→
deg
⁡
F
=
N
5
4
3com23
⊢
A
∈
ℂ
∧
A
≠
0
∧
N
∈
ℕ
0
→
deg
⁡
F
=
N