Step |
Hyp |
Ref |
Expression |
1 |
|
dgradd.1 |
|
2 |
|
dgradd.2 |
|
3 |
|
plyaddcl |
|
4 |
3
|
3adant3 |
|
5 |
|
dgrcl |
|
6 |
4 5
|
syl |
|
7 |
6
|
nn0red |
|
8 |
|
dgrcl |
|
9 |
2 8
|
eqeltrid |
|
10 |
9
|
3ad2ant2 |
|
11 |
10
|
nn0red |
|
12 |
|
dgrcl |
|
13 |
1 12
|
eqeltrid |
|
14 |
13
|
3ad2ant1 |
|
15 |
14
|
nn0red |
|
16 |
11 15
|
ifcld |
|
17 |
1 2
|
dgradd |
|
18 |
17
|
3adant3 |
|
19 |
11
|
leidd |
|
20 |
|
simp3 |
|
21 |
15 11 20
|
ltled |
|
22 |
|
breq1 |
|
23 |
|
breq1 |
|
24 |
22 23
|
ifboth |
|
25 |
19 21 24
|
syl2anc |
|
26 |
7 16 11 18 25
|
letrd |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
27 28
|
coeadd |
|
30 |
29
|
3adant3 |
|
31 |
30
|
fveq1d |
|
32 |
27
|
coef3 |
|
33 |
32
|
3ad2ant1 |
|
34 |
33
|
ffnd |
|
35 |
28
|
coef3 |
|
36 |
35
|
3ad2ant2 |
|
37 |
36
|
ffnd |
|
38 |
|
nn0ex |
|
39 |
38
|
a1i |
|
40 |
|
inidm |
|
41 |
15 11
|
ltnled |
|
42 |
20 41
|
mpbid |
|
43 |
|
simp1 |
|
44 |
27 1
|
dgrub |
|
45 |
44
|
3expia |
|
46 |
43 10 45
|
syl2anc |
|
47 |
46
|
necon1bd |
|
48 |
42 47
|
mpd |
|
49 |
48
|
adantr |
|
50 |
|
eqidd |
|
51 |
34 37 39 39 40 49 50
|
ofval |
|
52 |
10 51
|
mpdan |
|
53 |
36 10
|
ffvelrnd |
|
54 |
53
|
addid2d |
|
55 |
31 52 54
|
3eqtrd |
|
56 |
|
simp2 |
|
57 |
|
0red |
|
58 |
14
|
nn0ge0d |
|
59 |
57 15 11 58 20
|
lelttrd |
|
60 |
59
|
gt0ne0d |
|
61 |
2 28
|
dgreq0 |
|
62 |
|
fveq2 |
|
63 |
|
dgr0 |
|
64 |
63
|
eqcomi |
|
65 |
62 2 64
|
3eqtr4g |
|
66 |
61 65
|
syl6bir |
|
67 |
66
|
necon3d |
|
68 |
56 60 67
|
sylc |
|
69 |
55 68
|
eqnetrd |
|
70 |
|
eqid |
|
71 |
|
eqid |
|
72 |
70 71
|
dgrub |
|
73 |
4 10 69 72
|
syl3anc |
|
74 |
7 11
|
letri3d |
|
75 |
26 73 74
|
mpbir2and |
|