Metamath Proof Explorer


Theorem dgrco

Description: The degree of a composition of two polynomials is the product of the degrees. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Hypotheses dgrco.1 M = deg F
dgrco.2 N = deg G
dgrco.3 φ F Poly S
dgrco.4 φ G Poly S
Assertion dgrco φ deg F G = M N

Proof

Step Hyp Ref Expression
1 dgrco.1 M = deg F
2 dgrco.2 N = deg G
3 dgrco.3 φ F Poly S
4 dgrco.4 φ G Poly S
5 plyssc Poly S Poly
6 5 3 sselid φ F Poly
7 dgrcl F Poly S deg F 0
8 3 7 syl φ deg F 0
9 1 8 eqeltrid φ M 0
10 breq2 x = 0 deg f x deg f 0
11 10 imbi1d x = 0 deg f x deg f G = deg f N deg f 0 deg f G = deg f N
12 11 ralbidv x = 0 f Poly deg f x deg f G = deg f N f Poly deg f 0 deg f G = deg f N
13 12 imbi2d x = 0 φ f Poly deg f x deg f G = deg f N φ f Poly deg f 0 deg f G = deg f N
14 breq2 x = d deg f x deg f d
15 14 imbi1d x = d deg f x deg f G = deg f N deg f d deg f G = deg f N
16 15 ralbidv x = d f Poly deg f x deg f G = deg f N f Poly deg f d deg f G = deg f N
17 16 imbi2d x = d φ f Poly deg f x deg f G = deg f N φ f Poly deg f d deg f G = deg f N
18 breq2 x = d + 1 deg f x deg f d + 1
19 18 imbi1d x = d + 1 deg f x deg f G = deg f N deg f d + 1 deg f G = deg f N
20 19 ralbidv x = d + 1 f Poly deg f x deg f G = deg f N f Poly deg f d + 1 deg f G = deg f N
21 20 imbi2d x = d + 1 φ f Poly deg f x deg f G = deg f N φ f Poly deg f d + 1 deg f G = deg f N
22 breq2 x = M deg f x deg f M
23 22 imbi1d x = M deg f x deg f G = deg f N deg f M deg f G = deg f N
24 23 ralbidv x = M f Poly deg f x deg f G = deg f N f Poly deg f M deg f G = deg f N
25 24 imbi2d x = M φ f Poly deg f x deg f G = deg f N φ f Poly deg f M deg f G = deg f N
26 dgrcl G Poly S deg G 0
27 4 26 syl φ deg G 0
28 2 27 eqeltrid φ N 0
29 28 nn0cnd φ N
30 29 adantr φ f Poly deg f 0 N
31 30 mul02d φ f Poly deg f 0 0 N = 0
32 simprr φ f Poly deg f 0 deg f 0
33 dgrcl f Poly deg f 0
34 33 ad2antrl φ f Poly deg f 0 deg f 0
35 34 nn0ge0d φ f Poly deg f 0 0 deg f
36 34 nn0red φ f Poly deg f 0 deg f
37 0re 0
38 letri3 deg f 0 deg f = 0 deg f 0 0 deg f
39 36 37 38 sylancl φ f Poly deg f 0 deg f = 0 deg f 0 0 deg f
40 32 35 39 mpbir2and φ f Poly deg f 0 deg f = 0
41 40 oveq1d φ f Poly deg f 0 deg f N = 0 N
42 31 41 40 3eqtr4d φ f Poly deg f 0 deg f N = deg f
43 fconstmpt × f 0 = y f 0
44 0dgrb f Poly deg f = 0 f = × f 0
45 44 ad2antrl φ f Poly deg f 0 deg f = 0 f = × f 0
46 40 45 mpbid φ f Poly deg f 0 f = × f 0
47 4 adantr φ f Poly deg f 0 G Poly S
48 plyf G Poly S G :
49 47 48 syl φ f Poly deg f 0 G :
50 49 ffvelrnda φ f Poly deg f 0 y G y
51 49 feqmptd φ f Poly deg f 0 G = y G y
52 fconstmpt × f 0 = x f 0
53 46 52 eqtrdi φ f Poly deg f 0 f = x f 0
54 eqidd x = G y f 0 = f 0
55 50 51 53 54 fmptco φ f Poly deg f 0 f G = y f 0
56 43 46 55 3eqtr4a φ f Poly deg f 0 f = f G
57 56 fveq2d φ f Poly deg f 0 deg f = deg f G
58 42 57 eqtr2d φ f Poly deg f 0 deg f G = deg f N
59 58 expr φ f Poly deg f 0 deg f G = deg f N
60 59 ralrimiva φ f Poly deg f 0 deg f G = deg f N
61 fveq2 f = g deg f = deg g
62 61 breq1d f = g deg f d deg g d
63 coeq1 f = g f G = g G
64 63 fveq2d f = g deg f G = deg g G
65 61 oveq1d f = g deg f N = deg g N
66 64 65 eqeq12d f = g deg f G = deg f N deg g G = deg g N
67 62 66 imbi12d f = g deg f d deg f G = deg f N deg g d deg g G = deg g N
68 67 cbvralvw f Poly deg f d deg f G = deg f N g Poly deg g d deg g G = deg g N
69 33 ad2antrl φ d 0 f Poly g Poly deg g d deg g G = deg g N deg f 0
70 69 nn0red φ d 0 f Poly g Poly deg g d deg g G = deg g N deg f
71 nn0p1nn d 0 d + 1
72 71 ad2antlr φ d 0 f Poly g Poly deg g d deg g G = deg g N d + 1
73 72 nnred φ d 0 f Poly g Poly deg g d deg g G = deg g N d + 1
74 70 73 leloed φ d 0 f Poly g Poly deg g d deg g G = deg g N deg f d + 1 deg f < d + 1 deg f = d + 1
75 simplr φ d 0 f Poly g Poly deg g d deg g G = deg g N d 0
76 nn0leltp1 deg f 0 d 0 deg f d deg f < d + 1
77 69 75 76 syl2anc φ d 0 f Poly g Poly deg g d deg g G = deg g N deg f d deg f < d + 1
78 fveq2 g = f deg g = deg f
79 78 breq1d g = f deg g d deg f d
80 coeq1 g = f g G = f G
81 80 fveq2d g = f deg g G = deg f G
82 78 oveq1d g = f deg g N = deg f N
83 81 82 eqeq12d g = f deg g G = deg g N deg f G = deg f N
84 79 83 imbi12d g = f deg g d deg g G = deg g N deg f d deg f G = deg f N
85 84 rspcva f Poly g Poly deg g d deg g G = deg g N deg f d deg f G = deg f N
86 85 adantl φ d 0 f Poly g Poly deg g d deg g G = deg g N deg f d deg f G = deg f N
87 77 86 sylbird φ d 0 f Poly g Poly deg g d deg g G = deg g N deg f < d + 1 deg f G = deg f N
88 eqid deg f = deg f
89 simprll φ d 0 f Poly g Poly deg g d deg g G = deg g N deg f = d + 1 f Poly
90 5 4 sselid φ G Poly
91 90 ad2antrr φ d 0 f Poly g Poly deg g d deg g G = deg g N deg f = d + 1 G Poly
92 eqid coeff f = coeff f
93 simplr φ d 0 f Poly g Poly deg g d deg g G = deg g N deg f = d + 1 d 0
94 simprr φ d 0 f Poly g Poly deg g d deg g G = deg g N deg f = d + 1 deg f = d + 1
95 simprlr φ d 0 f Poly g Poly deg g d deg g G = deg g N deg f = d + 1 g Poly deg g d deg g G = deg g N
96 fveq2 g = h deg g = deg h
97 96 breq1d g = h deg g d deg h d
98 coeq1 g = h g G = h G
99 98 fveq2d g = h deg g G = deg h G
100 96 oveq1d g = h deg g N = deg h N
101 99 100 eqeq12d g = h deg g G = deg g N deg h G = deg h N
102 97 101 imbi12d g = h deg g d deg g G = deg g N deg h d deg h G = deg h N
103 102 cbvralvw g Poly deg g d deg g G = deg g N h Poly deg h d deg h G = deg h N
104 95 103 sylib φ d 0 f Poly g Poly deg g d deg g G = deg g N deg f = d + 1 h Poly deg h d deg h G = deg h N
105 88 2 89 91 92 93 94 104 dgrcolem2 φ d 0 f Poly g Poly deg g d deg g G = deg g N deg f = d + 1 deg f G = deg f N
106 105 expr φ d 0 f Poly g Poly deg g d deg g G = deg g N deg f = d + 1 deg f G = deg f N
107 87 106 jaod φ d 0 f Poly g Poly deg g d deg g G = deg g N deg f < d + 1 deg f = d + 1 deg f G = deg f N
108 74 107 sylbid φ d 0 f Poly g Poly deg g d deg g G = deg g N deg f d + 1 deg f G = deg f N
109 108 expr φ d 0 f Poly g Poly deg g d deg g G = deg g N deg f d + 1 deg f G = deg f N
110 109 ralrimdva φ d 0 g Poly deg g d deg g G = deg g N f Poly deg f d + 1 deg f G = deg f N
111 68 110 syl5bi φ d 0 f Poly deg f d deg f G = deg f N f Poly deg f d + 1 deg f G = deg f N
112 111 expcom d 0 φ f Poly deg f d deg f G = deg f N f Poly deg f d + 1 deg f G = deg f N
113 112 a2d d 0 φ f Poly deg f d deg f G = deg f N φ f Poly deg f d + 1 deg f G = deg f N
114 13 17 21 25 60 113 nn0ind M 0 φ f Poly deg f M deg f G = deg f N
115 9 114 mpcom φ f Poly deg f M deg f G = deg f N
116 9 nn0red φ M
117 116 leidd φ M M
118 fveq2 f = F deg f = deg F
119 118 1 eqtr4di f = F deg f = M
120 119 breq1d f = F deg f M M M
121 coeq1 f = F f G = F G
122 121 fveq2d f = F deg f G = deg F G
123 119 oveq1d f = F deg f N = M N
124 122 123 eqeq12d f = F deg f G = deg f N deg F G = M N
125 120 124 imbi12d f = F deg f M deg f G = deg f N M M deg F G = M N
126 125 rspcv F Poly f Poly deg f M deg f G = deg f N M M deg F G = M N
127 6 115 117 126 syl3c φ deg F G = M N