Step |
Hyp |
Ref |
Expression |
1 |
|
dgrco.1 |
|
2 |
|
dgrco.2 |
|
3 |
|
dgrco.3 |
|
4 |
|
dgrco.4 |
|
5 |
|
dgrco.5 |
|
6 |
|
dgrco.6 |
|
7 |
|
dgrco.7 |
|
8 |
|
dgrco.8 |
|
9 |
|
plyf |
|
10 |
4 9
|
syl |
|
11 |
10
|
ffvelrnda |
|
12 |
|
plyf |
|
13 |
3 12
|
syl |
|
14 |
13
|
ffvelrnda |
|
15 |
11 14
|
syldan |
|
16 |
5
|
coef3 |
|
17 |
3 16
|
syl |
|
18 |
|
dgrcl |
|
19 |
3 18
|
syl |
|
20 |
1 19
|
eqeltrid |
|
21 |
17 20
|
ffvelrnd |
|
22 |
21
|
adantr |
|
23 |
20
|
adantr |
|
24 |
11 23
|
expcld |
|
25 |
22 24
|
mulcld |
|
26 |
15 25
|
npcand |
|
27 |
26
|
mpteq2dva |
|
28 |
|
cnex |
|
29 |
28
|
a1i |
|
30 |
15 25
|
subcld |
|
31 |
|
eqidd |
|
32 |
|
eqidd |
|
33 |
29 30 25 31 32
|
offval2 |
|
34 |
10
|
feqmptd |
|
35 |
13
|
feqmptd |
|
36 |
|
fveq2 |
|
37 |
11 34 35 36
|
fmptco |
|
38 |
27 33 37
|
3eqtr4rd |
|
39 |
38
|
fveq2d |
|
40 |
39
|
adantr |
|
41 |
29 15 25 37 32
|
offval2 |
|
42 |
|
plyssc |
|
43 |
42 3
|
sselid |
|
44 |
42 4
|
sselid |
|
45 |
|
addcl |
|
46 |
45
|
adantl |
|
47 |
|
mulcl |
|
48 |
47
|
adantl |
|
49 |
43 44 46 48
|
plyco |
|
50 |
|
eqidd |
|
51 |
|
oveq1 |
|
52 |
51
|
oveq2d |
|
53 |
11 34 50 52
|
fmptco |
|
54 |
|
ssidd |
|
55 |
|
eqid |
|
56 |
55
|
ply1term |
|
57 |
54 21 20 56
|
syl3anc |
|
58 |
57 44 46 48
|
plyco |
|
59 |
53 58
|
eqeltrrd |
|
60 |
|
plysubcl |
|
61 |
49 59 60
|
syl2anc |
|
62 |
41 61
|
eqeltrrd |
|
63 |
62
|
adantr |
|
64 |
59
|
adantr |
|
65 |
|
nn0p1nn |
|
66 |
6 65
|
syl |
|
67 |
7 66
|
eqeltrd |
|
68 |
67
|
nngt0d |
|
69 |
|
fveq2 |
|
70 |
|
dgr0 |
|
71 |
69 70
|
eqtrdi |
|
72 |
71
|
breq1d |
|
73 |
68 72
|
syl5ibrcom |
|
74 |
|
idd |
|
75 |
|
eqid |
|
76 |
1 75
|
dgrsub |
|
77 |
43 57 76
|
syl2anc |
|
78 |
67
|
nnne0d |
|
79 |
1 5
|
dgreq0 |
|
80 |
3 79
|
syl |
|
81 |
|
fveq2 |
|
82 |
81 70
|
eqtrdi |
|
83 |
1 82
|
syl5eq |
|
84 |
80 83
|
syl6bir |
|
85 |
84
|
necon3d |
|
86 |
78 85
|
mpd |
|
87 |
55
|
dgr1term |
|
88 |
21 86 20 87
|
syl3anc |
|
89 |
88
|
ifeq1d |
|
90 |
|
ifid |
|
91 |
89 90
|
eqtrdi |
|
92 |
77 91
|
breqtrd |
|
93 |
|
eqid |
|
94 |
5 93
|
coesub |
|
95 |
43 57 94
|
syl2anc |
|
96 |
95
|
fveq1d |
|
97 |
17
|
ffnd |
|
98 |
93
|
coef3 |
|
99 |
57 98
|
syl |
|
100 |
99
|
ffnd |
|
101 |
|
nn0ex |
|
102 |
101
|
a1i |
|
103 |
|
inidm |
|
104 |
|
eqidd |
|
105 |
55
|
coe1term |
|
106 |
21 20 20 105
|
syl3anc |
|
107 |
|
eqid |
|
108 |
107
|
iftruei |
|
109 |
106 108
|
eqtrdi |
|
110 |
109
|
adantr |
|
111 |
97 100 102 102 103 104 110
|
ofval |
|
112 |
20 111
|
mpdan |
|
113 |
21
|
subidd |
|
114 |
96 112 113
|
3eqtrd |
|
115 |
|
plysubcl |
|
116 |
43 57 115
|
syl2anc |
|
117 |
|
eqid |
|
118 |
|
eqid |
|
119 |
117 118
|
dgrlt |
|
120 |
116 20 119
|
syl2anc |
|
121 |
92 114 120
|
mpbir2and |
|
122 |
73 74 121
|
mpjaod |
|
123 |
122
|
adantr |
|
124 |
|
dgrcl |
|
125 |
116 124
|
syl |
|
126 |
125
|
nn0red |
|
127 |
126
|
adantr |
|
128 |
20
|
nn0red |
|
129 |
128
|
adantr |
|
130 |
|
nnre |
|
131 |
130
|
adantl |
|
132 |
|
nngt0 |
|
133 |
132
|
adantl |
|
134 |
|
ltmul1 |
|
135 |
127 129 131 133 134
|
syl112anc |
|
136 |
123 135
|
mpbid |
|
137 |
13
|
ffvelrnda |
|
138 |
21
|
adantr |
|
139 |
|
id |
|
140 |
|
expcl |
|
141 |
139 20 140
|
syl2anr |
|
142 |
138 141
|
mulcld |
|
143 |
29 137 142 35 50
|
offval2 |
|
144 |
36 52
|
oveq12d |
|
145 |
11 34 143 144
|
fmptco |
|
146 |
145
|
fveq2d |
|
147 |
122 7
|
breqtrd |
|
148 |
|
nn0leltp1 |
|
149 |
125 6 148
|
syl2anc |
|
150 |
147 149
|
mpbird |
|
151 |
|
fveq2 |
|
152 |
151
|
breq1d |
|
153 |
|
coeq1 |
|
154 |
153
|
fveq2d |
|
155 |
151
|
oveq1d |
|
156 |
154 155
|
eqeq12d |
|
157 |
152 156
|
imbi12d |
|
158 |
157 8 116
|
rspcdva |
|
159 |
150 158
|
mpd |
|
160 |
146 159
|
eqtr3d |
|
161 |
160
|
adantr |
|
162 |
|
fconstmpt |
|
163 |
162
|
a1i |
|
164 |
|
eqidd |
|
165 |
29 22 24 163 164
|
offval2 |
|
166 |
165
|
fveq2d |
|
167 |
|
eqidd |
|
168 |
11 34 167 51
|
fmptco |
|
169 |
|
1cnd |
|
170 |
|
plypow |
|
171 |
54 169 20 170
|
syl3anc |
|
172 |
171 44 46 48
|
plyco |
|
173 |
168 172
|
eqeltrrd |
|
174 |
|
dgrmulc |
|
175 |
21 86 173 174
|
syl3anc |
|
176 |
166 175
|
eqtr3d |
|
177 |
176
|
adantr |
|
178 |
67
|
adantr |
|
179 |
|
simpr |
|
180 |
4
|
adantr |
|
181 |
2 178 179 180
|
dgrcolem1 |
|
182 |
177 181
|
eqtrd |
|
183 |
136 161 182
|
3brtr4d |
|
184 |
|
eqid |
|
185 |
|
eqid |
|
186 |
184 185
|
dgradd2 |
|
187 |
63 64 183 186
|
syl3anc |
|
188 |
40 187 182
|
3eqtrd |
|
189 |
|
0cn |
|
190 |
|
ffvelrn |
|
191 |
10 189 190
|
sylancl |
|
192 |
13 191
|
ffvelrnd |
|
193 |
|
0dgr |
|
194 |
192 193
|
syl |
|
195 |
20
|
nn0cnd |
|
196 |
195
|
mul01d |
|
197 |
194 196
|
eqtr4d |
|
198 |
197
|
adantr |
|
199 |
191
|
ad2antrr |
|
200 |
|
simpr |
|
201 |
2 200
|
eqtr3id |
|
202 |
|
0dgrb |
|
203 |
4 202
|
syl |
|
204 |
203
|
adantr |
|
205 |
201 204
|
mpbid |
|
206 |
|
fconstmpt |
|
207 |
205 206
|
eqtrdi |
|
208 |
35
|
adantr |
|
209 |
|
fveq2 |
|
210 |
199 207 208 209
|
fmptco |
|
211 |
|
fconstmpt |
|
212 |
210 211
|
eqtr4di |
|
213 |
212
|
fveq2d |
|
214 |
200
|
oveq2d |
|
215 |
198 213 214
|
3eqtr4d |
|
216 |
|
dgrcl |
|
217 |
4 216
|
syl |
|
218 |
2 217
|
eqeltrid |
|
219 |
|
elnn0 |
|
220 |
218 219
|
sylib |
|
221 |
188 215 220
|
mpjaodan |
|