Metamath Proof Explorer


Theorem dgrid

Description: The degree of the identity function. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Assertion dgrid deg X p = 1

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 ax-1ne0 1 0
3 1nn0 1 0
4 mptresid I = z z
5 df-idp X p = I
6 exp1 z z 1 = z
7 6 oveq2d z 1 z 1 = 1 z
8 mulid2 z 1 z = z
9 7 8 eqtrd z 1 z 1 = z
10 9 mpteq2ia z 1 z 1 = z z
11 4 5 10 3eqtr4i X p = z 1 z 1
12 11 dgr1term 1 1 0 1 0 deg X p = 1
13 1 2 3 12 mp3an deg X p = 1