Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Elementary properties of complex polynomials
dgrid
Next ⟩
dgreq0
Metamath Proof Explorer
Ascii
Unicode
Theorem
dgrid
Description:
The degree of the identity function.
(Contributed by
Mario Carneiro
, 26-Jul-2014)
Ref
Expression
Assertion
dgrid
⊢
deg
⁡
X
p
=
1
Proof
Step
Hyp
Ref
Expression
1
ax-1cn
⊢
1
∈
ℂ
2
ax-1ne0
⊢
1
≠
0
3
1nn0
⊢
1
∈
ℕ
0
4
mptresid
⊢
I
↾
ℂ
=
z
∈
ℂ
⟼
z
5
df-idp
⊢
X
p
=
I
↾
ℂ
6
exp1
⊢
z
∈
ℂ
→
z
1
=
z
7
6
oveq2d
⊢
z
∈
ℂ
→
1
⁢
z
1
=
1
⁢
z
8
mulid2
⊢
z
∈
ℂ
→
1
⁢
z
=
z
9
7
8
eqtrd
⊢
z
∈
ℂ
→
1
⁢
z
1
=
z
10
9
mpteq2ia
⊢
z
∈
ℂ
⟼
1
⁢
z
1
=
z
∈
ℂ
⟼
z
11
4
5
10
3eqtr4i
⊢
X
p
=
z
∈
ℂ
⟼
1
⁢
z
1
12
11
dgr1term
⊢
1
∈
ℂ
∧
1
≠
0
∧
1
∈
ℕ
0
→
deg
⁡
X
p
=
1
13
1
2
3
12
mp3an
⊢
deg
⁡
X
p
=
1