Metamath Proof Explorer


Theorem dgrlem

Description: Lemma for dgrcl and similar theorems. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypothesis dgrval.1 A = coeff F
Assertion dgrlem F Poly S A : 0 S 0 n x A -1 0 x n

Proof

Step Hyp Ref Expression
1 dgrval.1 A = coeff F
2 elply2 F Poly S S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k
3 2 simprbi F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k
4 simplrr F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k a S 0 0
5 simpll F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k F Poly S
6 plybss F Poly S S
7 5 6 syl F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k S
8 0cnd F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k 0
9 8 snssd F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k 0
10 7 9 unssd F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k S 0
11 cnex V
12 ssexg S 0 V S 0 V
13 10 11 12 sylancl F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k S 0 V
14 nn0ex 0 V
15 elmapg S 0 V 0 V a S 0 0 a : 0 S 0
16 13 14 15 sylancl F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k a S 0 0 a : 0 S 0
17 4 16 mpbid F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k a : 0 S 0
18 simplrl F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k n 0
19 17 10 fssd F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k a : 0
20 simprl F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k a n + 1 = 0
21 simprr F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k F = z k = 0 n a k z k
22 5 18 19 20 21 coeeq F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k coeff F = a
23 1 22 eqtr2id F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k a = A
24 23 feq1d F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k a : 0 S 0 A : 0 S 0
25 17 24 mpbid F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k A : 0 S 0
26 25 ex F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k A : 0 S 0
27 26 rexlimdvva F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k A : 0 S 0
28 3 27 mpd F Poly S A : 0 S 0
29 nn0ssz 0
30 ffn a : 0 a Fn 0
31 elpreima a Fn 0 x a -1 0 x 0 a x 0
32 19 30 31 3syl F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k x a -1 0 x 0 a x 0
33 32 biimpa F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k x a -1 0 x 0 a x 0
34 eldifsni a x 0 a x 0
35 33 34 simpl2im F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k x a -1 0 a x 0
36 33 simpld F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k x a -1 0 x 0
37 plyco0 n 0 a : 0 a n + 1 = 0 x 0 a x 0 x n
38 18 19 37 syl2anc F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k a n + 1 = 0 x 0 a x 0 x n
39 20 38 mpbid F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k x 0 a x 0 x n
40 39 r19.21bi F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k x 0 a x 0 x n
41 36 40 syldan F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k x a -1 0 a x 0 x n
42 35 41 mpd F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k x a -1 0 x n
43 42 ralrimiva F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k x a -1 0 x n
44 23 cnveqd F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k a -1 = A -1
45 44 imaeq1d F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k a -1 0 = A -1 0
46 45 raleqdv F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k x a -1 0 x n x A -1 0 x n
47 43 46 mpbid F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k x A -1 0 x n
48 47 ex F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k x A -1 0 x n
49 48 expr F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k x A -1 0 x n
50 49 rexlimdv F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k x A -1 0 x n
51 50 reximdva F Poly S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k n 0 x A -1 0 x n
52 3 51 mpd F Poly S n 0 x A -1 0 x n
53 ssrexv 0 n 0 x A -1 0 x n n x A -1 0 x n
54 29 52 53 mpsyl F Poly S n x A -1 0 x n
55 28 54 jca F Poly S A : 0 S 0 n x A -1 0 x n