Metamath Proof Explorer


Theorem dgrlt

Description: Two ways to say that the degree of F is strictly less than N . (Contributed by Mario Carneiro, 25-Jul-2014)

Ref Expression
Hypotheses dgreq0.1 N = deg F
dgreq0.2 A = coeff F
Assertion dgrlt F Poly S M 0 F = 0 𝑝 N < M N M A M = 0

Proof

Step Hyp Ref Expression
1 dgreq0.1 N = deg F
2 dgreq0.2 A = coeff F
3 simpr F Poly S M 0 F = 0 𝑝 F = 0 𝑝
4 3 fveq2d F Poly S M 0 F = 0 𝑝 deg F = deg 0 𝑝
5 dgr0 deg 0 𝑝 = 0
6 5 eqcomi 0 = deg 0 𝑝
7 4 1 6 3eqtr4g F Poly S M 0 F = 0 𝑝 N = 0
8 nn0ge0 M 0 0 M
9 8 ad2antlr F Poly S M 0 F = 0 𝑝 0 M
10 7 9 eqbrtrd F Poly S M 0 F = 0 𝑝 N M
11 3 fveq2d F Poly S M 0 F = 0 𝑝 coeff F = coeff 0 𝑝
12 coe0 coeff 0 𝑝 = 0 × 0
13 12 eqcomi 0 × 0 = coeff 0 𝑝
14 11 2 13 3eqtr4g F Poly S M 0 F = 0 𝑝 A = 0 × 0
15 14 fveq1d F Poly S M 0 F = 0 𝑝 A M = 0 × 0 M
16 c0ex 0 V
17 16 fvconst2 M 0 0 × 0 M = 0
18 17 ad2antlr F Poly S M 0 F = 0 𝑝 0 × 0 M = 0
19 15 18 eqtrd F Poly S M 0 F = 0 𝑝 A M = 0
20 10 19 jca F Poly S M 0 F = 0 𝑝 N M A M = 0
21 dgrcl F Poly S deg F 0
22 1 21 eqeltrid F Poly S N 0
23 22 nn0red F Poly S N
24 nn0re M 0 M
25 ltle N M N < M N M
26 23 24 25 syl2an F Poly S M 0 N < M N M
27 26 imp F Poly S M 0 N < M N M
28 2 1 dgrub F Poly S M 0 A M 0 M N
29 28 3expia F Poly S M 0 A M 0 M N
30 lenlt M N M N ¬ N < M
31 24 23 30 syl2anr F Poly S M 0 M N ¬ N < M
32 29 31 sylibd F Poly S M 0 A M 0 ¬ N < M
33 32 necon4ad F Poly S M 0 N < M A M = 0
34 33 imp F Poly S M 0 N < M A M = 0
35 27 34 jca F Poly S M 0 N < M N M A M = 0
36 20 35 jaodan F Poly S M 0 F = 0 𝑝 N < M N M A M = 0
37 leloe N M N M N < M N = M
38 23 24 37 syl2an F Poly S M 0 N M N < M N = M
39 38 biimpa F Poly S M 0 N M N < M N = M
40 39 adantrr F Poly S M 0 N M A M = 0 N < M N = M
41 fveq2 N = M A N = A M
42 1 2 dgreq0 F Poly S F = 0 𝑝 A N = 0
43 42 ad2antrr F Poly S M 0 N M A M = 0 F = 0 𝑝 A N = 0
44 simprr F Poly S M 0 N M A M = 0 A M = 0
45 44 eqeq2d F Poly S M 0 N M A M = 0 A N = A M A N = 0
46 43 45 bitr4d F Poly S M 0 N M A M = 0 F = 0 𝑝 A N = A M
47 41 46 syl5ibr F Poly S M 0 N M A M = 0 N = M F = 0 𝑝
48 47 orim2d F Poly S M 0 N M A M = 0 N < M N = M N < M F = 0 𝑝
49 40 48 mpd F Poly S M 0 N M A M = 0 N < M F = 0 𝑝
50 49 orcomd F Poly S M 0 N M A M = 0 F = 0 𝑝 N < M
51 36 50 impbida F Poly S M 0 F = 0 𝑝 N < M N M A M = 0